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Abstract—Instructing a robot to complete an everyday task
within our homes has been a long-standing challenge for robotics.
While recent progress in language-conditioned imitation learning
and offline reinforcement learning has demonstrated impressive
performance across a wide range of tasks, they are typically
limited to short-horizon tasks – not reflective of those a home
robot would be expected to complete. While existing architectures
have the potential to learn these desired behaviours, the lack of
the necessary long-horizon, multi-step datasets for real robotic
systems poses a significant challenge. To this end, we present the
Long-Horizon Manipulation (LHManip) dataset comprising 200
episodes, demonstrating 20 different manipulation tasks via real
robot teleoperation. The tasks entail multiple sub-tasks, including
grasping, pushing, stacking and throwing objects in highly clut-
tered environments. Each task is paired with a natural language
instruction and multi-camera viewpoints for point-cloud or NeRF
reconstruction. The dataset comprises 176,278 observation-action
pairs which form part of the Open X-Embodiment dataset. The
full LHManip dataset is made publicly available here.

I. INTRODUCTION

Solving long-horizon manipulation tasks is crucial for ad-
dressing real-world applicability of robotic problems. Many
practical tasks and activities as meal preparation or room
cleaning involve a sequence of actions performed over an
extended period. These tasks are more complex than the short-
term ones, as they require robots not only to manipulate objects
but also to plan and execute actions across multiple steps.
Long-horizon datasets have potential to allow the development
of algorithms capable of generalizing across diverse scenarios,
adapting to new settings, and addressing the challenges posed
by tasks requiring several steps to be executed.

Long-horizon manipulation tasks bring forth the importance
of perceptual skills in robotic systems. While requiring to
execute low-level control policies to solve the sub-tasks in
which they are decomposed, these tasks also require high-
level planning and reasoning capabilities. Furthermore, as
robots become increasingly integrated into human-centered
settings, they will be required to understand and follow natural
language instructions. Understanding natural language instruc-
tions offers the opportunity to develop robotic systems that are
capable of autonomously learning, generalizing and adapting
to novel settings and environments, rather than being explicitly
programmed for each task [12]

The wide availability of datasets for short-horizon ma-
nipulation tasks fostered the development of learning-based
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Fig. 1: (a) Motion capture and robot setup. (b) The robot
was teleoperated by a human operator equipped with a motion
capture system for hand gestures and movements detection.

approaches for such tasks [6]. In contrast, the robotics liter-
ature lacks real-world datasets for long-horizon tasks. With
LHManip, our objective is to address this gap, providing data
to develop novel approaches to solve real-world long-horizon
manipulation tasks, benchmark existing methods for such tasks
evaluated only in simulation [14] on real data, and evaluate
generalization properties of state-of-the-art approaches [2].
Our dataset consists of 20 tabletop manipulation tasks involv-
ing 33 everyday objects. For each of these tasks, we provide a
natural language description and 10 demonstrations collected
via teleoperation. Different demonstrations of the same task
either involve manipulation of different object instances (e.g.
objects with different texture or size) or consider different
environment conditions (e.g. different distractors on the table
or different initial configurations of the objects involved in the
tasks). For each demonstration, we provide RGB and depth
observations from a wrist-mounted and two static cameras,
and robot proprioceptive information. For each timestep, we
provide the cartesian displacement of the end-effector of the
robot and the position offset applied to the gripper. This dataset
forms part of the larger effort by the Open X-Embodiment
collaboration [10], and this paper provides details of our
contribution.

II. RELATED WORK

Long-horizon manipulation tasks are challenging robotics
problems that require both high-level reasoning capabilities to
decompose the tasks in sequences of sub-tasks and low-level
reasoning to solve the short-horizon subtasks. Existing ap-
proaches based on Hierarchical Reinforcement Learning [14]
have been extensively studied to solve long-horizon tasks, but
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Fig. 2: Sub-tasks decomposition of a Place the bowl on the plate and the cup in the bowl matching the color sequence.

Fig. 3: Tasks variations: we consider different plate-bowl colors for the Place the bowls on the appropriate plates task (left)
and different plates for the Dry the plate task (right).

their application in real robotic tasks is hampered by the need
of huge amounts of real training data. Other approaches solve
long-horizon tasks with methods based on Imitation Learn-
ing [8], combinations of Task and Motion Planning (TAMP)
and Reinforcement Learning (RL) [3], or skills learning with
Large Language Models (LLM) [15], and would benefit from
the availability of real-world data for training.

While it has been shown in the literature the benefit of using
real robotic datasets to learn short-horizon manipulation tasks
as pick and place [1] or combinations of different tasks [13],
datasets for long-horizon tasks are mainly provided in sim-
ulated environments. The IKEA furniture assembly environ-
ment [7] provides simulated environments for assembly tasks
that require long-horizon manipulation skills. CALVIN [9]
provides a dataset and a benchmark for language-guided long-
horizon tasks with the aim of evaluating robot capabilities
of learning new skills. LoHoRavens [16], instead, is a sim-
ulated benchmark composed of ten long-horizon language-
conditioned tasks that require at least five pick-and-place steps.

To overcome the limitations of learning robotic tasks in
simulated environments, FurnitureBench [5] proposes a bench-
mark for long-horizon assembly tasks, such as lamp screwing
and assembling table legs. While providing a huge amount of
real teleoperated data (5100 demonstrations), the environments
are constrained to tabletop settings with 3D-printed objects
with multiple markers attached on them. The dataset used
to benchmark results in [11], instead, composes short-horizon
language-guided tasks demonstrations into long-horizon tasks
in constrained tabletop environments. With our dataset, we aim
at overcoming these limitations and to provide a language-
grounded dataset to perform cluttered tabletop manipulation
tasks on everyday objects, relying only on a single language
description for task description, multiple RGB-D observations
of the environment and the proprioceptive state of the robot.

III. LHMANIP

A. Experimental Set-Up and Data Collection

We collect data via teleoperation, tracking the movements of
a human operator via 10 OptiTrack Motion Capture (MoCap)
cameras. Fig. 1 (a) shows the set-up. We equip the operator

with three different sets of markers to track their movement
in the cartesian space of the wrist, used to move the robot
end-effector, and to measure the distance between the human
thumb and index fingers, used to measure the robot gripper
aperture. Fig. 1 (b) shows the sets of markers used to capture
the motion of the operator.

We perform the tasks on a Franka Panda 7-DoF arm [4]
mounted on a LD-60 Omron mobile base1, keeping the mobile
base fixed. We move the robot to mimic the human movement
in the x, y, z position coordinates and the yaw orientation of
the end-effector (the rotation around the axis perpendicular to
the floor). Furthermore, we perform position control of the
gripper joints, to mimic the fingers aperture of the operator.

We perform the tasks in the cluttered tabletop setting shown
in Figs. 2, and 3. We record proprioceptive information from
the robot, and acquire visual and depth information from the
environment. We acquire RGB and depth information from an
Intel(R) RealSense D435 mounted on the wrist of the robot and
from two external Intel(R) RealSense D455. The Observation
and Action Space section provides detailed description of the
information made available in the dataset.

B. Dataset

1) Tasks: Tab. I overviews the 20 tasks considered in our
dataset. The tasks are performed in a highly-cluttered tabletop
environment and require the robot to manipulate everyday
objects. We provide the list of objects used in the dataset
in Tab. II. The considered tasks are composed by at least
two sub-tasks that the robot must complete to successfully
achieve the task. We report in Fig. 2 an exemplar sequence
from the Place the bowl on the plate and the cup in the bowl
matching the color task. To achieve the task, the robot needs
to perform several sub-tasks: it firstly grasps the orange bowl
and places it on the orange plate. Then it picks the orange
cup and places it in the orange bowl. Furthermore, with our
dataset we aim at providing data to solve tasks that require
high-level reasoning capabilities. In that we specify the task at
hand via a natural language instruction, without providing any
other low-level environment descriptions (i.e. object details

1https://www.ia.omron.com/products/family/3664/dimension.html
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Task Success Condition
Clean the pan. The robot picks the sponge and performs a movement on the pan.

Cook the capsicum and place it on a plate. The robot picks the capsicum, puts it in the pan, and then places it on a plate.
Cook the vegetables. All the vegetables are in the pan.

Dry the plate. The robot grasps a tissue and performs a movement on the plate.
Hide the teddy bear in the red bowl. The teddy bear is in the red bowl, and there is an object on it.

Match the cups with the appropriate bowls. The cups are in the bowls of the same color.
Place the bowl on the plate and the cup in the bowl

matching the color.
The bowl is on the plate of the same color, and the cup is in the bowl of the same

color.
Place the bowls on the appropriate plates. The bowls are on the plates of the same color.

Prepare two cups of tea. The two tea bags are placed in two different cups.
Put a highlighter on each book. There is a highlighter on each book.

Put the ball in the red pot. The ball is in the red pot.
Roll the dices in the bowl. The dices are thrown in the bowl.

Serve the vegetables in different plates. The vegetables in the pan are moved to different plates.

Set the table. The fork and the spoon are to the right of the plate, and the cup is beyond the plate
from the robot’s point of view.

Sort the balls from left to right in order of size. The balls are sorted in decreasing order from left to right in the robot’s point of view.
Stack green blocks. The three green blocks are stacked.

Stack the bowls. The three bowls on the table are stacked.
Stack the cups. The three cups on the table are stacked.

Throw away the rubbish paper. The rubbish paper is in the trash bin.

Water the potted plant and put the can on the plate. The robot performs a movement with the can close to the potted plant and then puts
the can on the plate.

TABLE I: Tasks. We provide the list of tasks in the dataset, specifying the conditions that must be met to achieve them.

LHManip Items
Ball Block Book
Bowl Capsicum Cob
Cup Dice Eggplant

Fennel Fork Highlighter
Ladle Lizard Marker
Mug Pan Plate

Plug Adapter Plush Dog Pot
Potted Plant Rubbish Paper Sippy Cup

Spatula Sponge Spoon
Tea Bag Teddy Bear Tissue Box

Trash Bin Watering Can Zucchini

TABLE II: Items considered in the LHManip dataset.

like shape, spatial information, or color). We believe that the
robot must be able to infer this information autonomously from
the environment. For these reasons, for each task, we provide
different variations of either the initial placement of the objects
in the environment or variations of the objects involved to
achieve the task. Fig. 3 shows two exemplar task variations
for two different tasks, where the robot is required to solve
the same task with different objects.

2) Observation and Action Space: LHManip provides a set
of visual and proprioceptive information that captures the robot
movement and the action that the robot is required to perform
via teleoperation. For each dataset, we provide observations
and actions as reported in Tab. III. We control the robot in a
non-blocking mode at 30 Hz. While we control the cartesian
end-effector of the robot and the aperture of the gripper, we
also provide joint-level information such as joint positions
and velocities which can be used for keypoints extraction
and enable task training with keypoint-based methods as
PerAct [12]. Please note also that, while we provide the full
quaternion displacements at each timestep, we control only the
rotation of the end-effector around the axis perpendicular to
the floor (z quaternion value). Values different from zero in
the other coordinates aim at correct the error between the real
orientation of the end-effector and the desired null orientation

around the x and y axes.
3) Dataset Access: The LHManip dataset is publicly avail-

able2. We provide data in .png format for RGB and Depth
images, and in .pkl files for numerical and textual information.
We provide a Python snippet code and the instructions to parse
the dataset. Furthermore, LHManip is included as part of the
larger dataset released in the Open X-Embodiment project [10].
We release additional depth and unprocessed sensory data
together with this paper, as well as the code to preprocess
this dataset into the desired RLDS data format3 as required by
the Open X-Embodiment project.

IV. CONCLUSION

The resolution of long-horizon tasks is crucial for integrat-
ing robots performing everyday tasks in our homes. Motivated
by the success of learning-based approaches for short-term
manipulation, we presented LHManip, a dataset for long-
horizon manipulation tasks, with the aim of addressing the
current gap in the literature where such datasets are lacking.

In the perspective of developing robots that can interact with
humans in everyday environments, we believe that they must
possess the ability to address long-horizon tasks based on a
single high-level natural instruction, relying only on visual
and proprioceptive feedback. Existing real datasets are either
constrained to simplified environments or have long-horizon
instructions composed of short-horizon task descriptions. LH-
Manip, instead, presents several challenges, such as natural
language instruction understanding, visual perception of the
environment in the presence of changing challenging condi-
tions, and learning of low-level control policies or keypoint-
based methods for sub-tasks execution.

We hope that our work will motivate the need for more
datasets, benchmarks and methodologies to learn long-horizon

2https://github.com/fedeceola/LHManip
3https://github.com/fedeceola/rlds dataset builder
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Observation Description Details
Main static RGB camera 640× 480× 3

Main static Depth camera 848× 480× 1
Cameras Secondary static RGB camera 640× 480× 3

Secondary static Depth camera 848× 480× 1
Wrist-mounted RGB camera 640× 480× 3
Wrist-mounted Depth camera 848× 480× 1

End-effector position (x, y, z) w.r.t. root frame
End-effector orientation (x, y, z, w) quaternion w.r.t. root frame

Proprioceptive Robot joint angles 7 values in rad
Gripper position 2 values in [0, 0.0404]

Robot joint velocities 7 values in rad/s
Instruction Natural language instruction String

Action Description Details
End-effector position displacement (x, y, z) w.r.t. root frame

Robot Action End-effector orientation displacement (x, y, z, w) quaternion w.r.t. root frame
Gripper opening displacement 1 value in [-0.0808, 0.0808]

TABLE III: Observations and Actions provided in LHManip.

manipulation tasks, thereby taking a significant stride toward
the integration of robots into human-centered environments.
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