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Abstract—Increasing the feasibility of integrating robots into
industrial processes requires the robots’ programming to be
easily accessible to domain experts with little-to-no robotics expe-
rience. In this paper, we present Interactive Keyframe Learning
(IKL), a method for learning a task specification as an ordered
sequence of keyframes in order to capture physical interactions
and geometric constraints from a single demonstration provided
by a non-expert. IKL infers the human’s intent for demon-
strated constrained motion online and performs interaction- and
constraint-based segmentation offline to reduce the nonessential
learned keyframes arising from one-shot learning. Through
results from a user study conducted in a real-world setting, we
demonstrate the significant benefits of IKL for teaching tasks to
robots.

I. INTRODUCTION

Recent advances in robotics have enabled the automation of
traditionally manual manufacturing tasks; however, integrating
robots into a factory via conventional programming methods
remains time- and resource-intensive, as even small changes
to a given task require reprogramming and can result in high
reintegration costs [12]. Learning from demonstration (LfD)
has been explored as a potential solution to this problem, as it
can enable domain experts with minimal programming expe-
rience to teach robots efficiently [12]. In this work, we focus
on learning a high-level task plan from a task demonstration
as an ordered sparse set of sequential poses called keyframes,
a concept introduced by Akgun et al. [1], which captures the
physical interactions and local geometric constraints of the
task. Learning keyframes will allow the system to generate
a compact, agent-independent representation of a multistep
task. These representations can then be provided to an existing
motion planner equipped with collision avoidance, allowing
the planner to optimize for unique objectives, such as power
or time efficiency.

Learning a sequenced task plan from a continuous demon-
stration requires trajectory segmentation. Pérez-D’Arpino and
Shah [10] used end-effector poses explicitly defined by the
user in order to learn keyframes and geometric constraints;
however, in this approach, the quality of the learned sequence
hinges upon the operator’s knowledge of what constitutes an
optimal set of keyframes. On the other hand, automated seg-
mentation techniques can be relatively robust to user expertise
and allow users to provide more intuitive trajectory demonstra-
tions. Inspired by the method introduced by Fearnhead and Liu
[4], prior work has utilized hidden Markov models (HMMs)
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Fig. 1. Interactive keyframe learning. Fig. 1(a) depicts our proposed interac-
tive keyframe learning framework that learns a task specification (marked as
red circles) from a single interactive demonstration. Fig. 1(b) illustrates the
question posed to the user during the interactive demonstration, and Fig. 1(c)
displays the suggestion provided.

and statistical model-based changepoint detection algorithms
to perform online segmentation based on changes to specified
models or latent variables [9]. However, such techniques are
limited to inference over parametrized models, and are unable
to recognize trajectory segments that cannot be modeled (such
as arbitrary unconstrained motion). Some approaches perform
interaction-based segmentation by learning action segments
through task events or space characteristics [6]; however,
modeling global and local task constraints, such as geometric
constraints, is often essential to successful task execution, as
demonstrated in prior research [10, 8].

Previous segmentation literature [10, 8] has explored learn-
ing from a single demonstration to mitigate the time- and
resource-intensive nature of providing multiple demonstra-
tions. For example, Liu et al. [8] learn articulated constraint
segments represented as task space regions (TSRs) [2] from
a single demonstration. However, the accuracy of the learned
constraints depends on the assumption that the teacher will
only demonstrate constrained motion when doing so is crucial
to task success. To mitigate this, we leverage human feedback
elicited during the demonstration to improve the accuracy
of the constraints learned. Additionally, we enable learner
feedback to the teacher as a suggestion in order to improve



their teaching of unconstrained motion, taking a step toward
improving the teacher’s mental model of the learner.

In this paper, we propose Interactive Keyframe Learning
(IKL), a proof-of-concept system for learning a task’s phys-
ical interactions and move-in-line constraints from a single
demonstration as an ordered sequence of keyframes encoded
as TSRs. We introduce an interactive demonstration framework
that allows a robot, through human-robot communication, to
learn a human’s intent for the demonstrated constrained motion
and evaluate its impact on the teaching workload and ability to
reduce the over-constrained nature of specifications that occur
when learning from a single demonstration via a user study
conducted in a real-world setting.

II. THE INTERACTIVE KEYFRAME LEARNING
FRAMEWORK

A set of sequential keyframes can encode a multistep task to
create an agent-independent task specification [10]; however,
multiple specifications may exist for a given task. IKL aims
to learn SE , the specification consisting only of the keyframes
essential for task success, with a set of keyframes considered
essential if removing any of the keyframes results in an
erroneous task specification. We limit the scope of this work to
the move-in-line constraint introduced by Perez-D’Arpino and
Shah [10], and physical interactions resulting in gripper state
changes. Learning constraints from a single demonstration can
result in over-constrained specifications [10]. To mitigate this,
IKL learns the move-in-line constraints in two stages, as shown
in Fig. 1(a): (1) the interactive demonstration and (2) offline
keyframe learning.

A. Interactive Demonstration

The interactive demonstration framework consists of an
online constraint detector and interactive communication, as
shown in Fig. 1(a). During teaching, the constraint detector
observes the end-effector poses (position and orientation) as
a sequence of frames, Xee = {xi

ee}i=1:Mt
, where Mt is the

number of frames recorded until time t and infers the latent
binary state variable, Yc[t], denoting the constrained nature
of demonstrated motion at time step t. Here, Yc[t] = 0 and
Yc[t] = 1 indicate unconstrained and constrained motion,
respectively. Informed by Yc[t], interactive communication
begins with the learner’s query, followed by the teacher’s
answer, and ends with a suggestion from the learner; this
dialog occurs each time Yc[t] toggles from 0 to 1. Once the
interactive demonstration ends, the teacher’s answers (Fb), the
inferred state variable ({Yc}), and the recorded demonstration
data Xee along with the gripper state (open or close) at every
frame xi

ee serve as input for the offline learning phase.
1) Online Constraint Detector: The online constraint de-

tector infers latent-state variable Yc[t] from the end-effector
poses, Xee = {xi

ee}i=1:Mt . First, the poses are transformed
to {di}i=1:M ′′

t
, which represents the distance error of xee to

constrained line motion; then models are fit to di to generate
the switching probability, Pr(B̄|di), defined as the probability
of the switching the constraint state given di, and, finally, the

latent state, Yc[t] is inferred. As the scope of this work is
limited to the straight-line constraint, there are only two states
in which the end-effector can be at instance i: constrained
(Y i

c = 1) or unconstrained (Y i
c = 0). We employ a logistic

regression model, with distance error {di} as the independent
variable, to model states of motion, Y i

c . The parameters of
this model are learned by fitting a logistic regression model to
labeled distance errors computed using demonstration data of
a straight line and a circle. This demonstration data is recorded
during a simple calibration step, wherein the human moves the
end-effector in a straight line and then in a circle.

a) Transformation: The process of inferring the latent
constraint state occurs online, updating Yc[t] with each new
end-effector pose observation, xee. First, {xi

ee}i=1:Mt is fil-
tered using the position vector of the frame, xi

ee, pi =
(xi, yi, zi), such that ∥pj+1−pj∥ = DF . Here, DF is a prede-
fined distance value, and pj is the position vector of frame xj

F

in the new filtered sequence of frames, XF = {xj
F }j=1:M ′

t
.

Next, the filtered trajectory, XF , is converted to the distance
errors, {di}i=1:M ′′

t
, by computing the perpendicular distance

from pj+2 to the straight line fitted to pj+1 and pj .
b) Switching probability: We assume constraint states

are independent in this step; therefore, the probability of
the constraint state switching given di and Y i−1

c = B,
Pr(Y i

c = B̄|di, Y i−1
c = B), is the logistic regression model

classification probability of Y i
c = B̄ given di, Pr(B̄|di).

c) Inference: Due to instrument and human motion
noise, simply thresholding the switching probability values
can lead to incorrect high-frequency switching of state values;
therefore, we drew inspiration from Khoramshahi et Billard [7]
and introduced an energy tank that governs state switching.
The energy of the tank, Ti, is defined as Ti = Ti−1 +
Pr(B̄|di)2 − Td, where Td is the constant dissipated energy.
When Ti ≥ Ts, where Ts is the threshold that triggers a state
switch, the state of the system is switched (Y i

c = 1−Y i−1
c ) and

the energy of the tank is reinitialized to zero — i.e., Ti = 0.
When Ti < Ts, Y i

c = Y i−1
c .

2) Interactive Communication.: Interactive communication
is a dialogue between the teacher and learner with a [query,
answer, suggestion] format designed to capture the human’s
intent for the demonstrated straight-line motion. Following the
guidelines established by Cakmak et al. [3], we adopt closed-
form, physically grounded feature queries under the queries
made only under certain conditions mode. Only a single
feature-based query about the validity of the detected con-
straint is required; here, the feature is the inferred constraint
state of motion Yc[t] at time t, and the query is “Do I have
to move in a straight line there?” The answers to this query
(“Yes,” “No,” and “I don’t know”) are presented to the teacher
each time it is posed (as shown in Fig. 1(b)), which occurs
when Yc[t− 1] = 0 and Yc[t] = 1. To physically ground these
queries, we pose them at the time of occurrence and present
images on a screen, illustrating each answer’s impact on
learning. Based on the teacher’s answers, we allow the learner
to provide a suggestion to improve the teacher’s understanding



of the learner, as illustrated in Fig. 1(c). The suggestion about
demonstrating unconstrained motion, “Please do not move in
a line unless the robot must move in a line,” is only given if
the teacher’s answer is either “No” or “I don’t know.” The
teacher can accept or decline the suggestion; we assume the
learner cannot access the teacher’s decision.

B. Offline Keyframe Learning

Offline keyframe learning (OKL) utilizes demonstration
data Xee, human feedback Fb, and the constraint state inferred
online, {Yc}, to learn SE . First, Xee is segmented based on
interactions captured by frames corresponding to a gripper
state change. Next, the constraint regions detected online are
modified to reflect the feedback received by removing the
constraint segments corresponding to the feedback “No.”.OKL
then performs constraint-based segmentation for each remain-
ing constraint region by performing two least-square fittings
and denoising the fitting errors via total variation denoising
(TVD) [11]. Finally, the boundary frames of the constraint
and interaction segments are encoded as keyframes to create
SE .

III. EVALUATIONS

In a within-subject study, we evaluated our proposed frame-
work against two baseline methods: keyframe demonstrations
(KD) [1, 10] and the articulated constraints learning approach
[8], which was augmented with keyframes inferred by gripper
commands (mACL).

A. Hypotheses

To learn SE , IKL employs human feedback to reduce excess
keyframes and constraint errors; in contrast, KD utilizes user-
defined keyframes without constraint information, and mACL
cannot account for the possibility of unintentionally over-
constrained demonstrations. Thus, we hypothesized that (1)
keyframe and (2) pose accuracies will be greater with our
technique than both baselines, (3) constraint accuracy will
be greater with our technique than the mACL baseline, (4)
teaching workload will be lower with our technique than both
baselines, and (5) teaching efficiency will be greater with
our technique than both baselines. We computed all accuracy
measures as the intersection-over-union (IoU) between the
corresponding feature of the learned specification and the
ground truth. We measured teaching workload according to
the NASA-TLX workload scale [5] and determined teaching
efficiency by dividing keyframe accuracy by teaching work-
load.

B. Experimental Design

We designed the experiment to collect kinesthetic demon-
strations of three tasks, as shown in Fig. 2: a pick–and-place
task with no constraints (Task 1), an inspection task with an
explicit constraint (Task 2), and an assembly task with an
implicit constraint (Task 3). We defined “explicit constraints”
as those explicitly written in the task description provided to
participants, whereas “implicit constraints” were required in
order to execute the task correctly but not explicitly written.

(a) Pick-and-place task (b) Inspection task (c) Assembly task

Fig. 2. Task setup. 2(a): The pick-and-place task is to move both objects
onto the other shelf. 2(b): The inspection task is to first move the object along
the blue line and then place it on the other shelf. 2(c): The assembly task is
to first move the object to the other shelf, then grasp the orange block on the
pipe and slide the pipe through the lamp.

Our setup comprised a Franka Emika Panda robot arm and
a graphical user interface (GUI) to display task descriptions
and robot queries. Query answers and gripper commands were
given through speech. In our experiment, we defined the
distance value (DF ) and TVD parameter as 5 cm and 0.6,
respectively, and all remaining parameters were inferred from
participants’ calibration and demonstration data.

The experiment comprised 12 participants ranging in age
from 20 to 62 years (M = 28.33, SD = 10.73), including
six men and six women. Seven participants indicated no
prior experience in robotics. Each participant began with a
demographic questionnaire and training session, followed by
a calibration phase during which they moved the robot along
a predefined line and circle. Calibration was followed by a
primary phase consisting of nine tasks: three modes balanced
between subjects using a Latin square design — IKL, KD,
and mACL — with three tasks per mode. The experimenter
gave the following instruction to the participants on how to
provide a demonstration under the IKL and mACL teaching
modes: “When moving the robot, try to move the robot in
a line only when you have to move in a straight line to
perform the task.” For KD teaching mode, the users were told
to “Give the least number of steps you think the robot needs
to perform the task correctly.” Participants responded to the
NASA-TLX questionnaire [5] after each task. The keyframe,
constraint, and NASA-TLX data collected was analyzed using
MATLAB’s linear mixed-effects modeling function (film),
which incorporated a participant’s age, sex, experience in
robotics and using a joystick controller, and the chronological
order of modes used.

C. Results and Discussion

KD cannot learn constraint labels for keyframes; therefore,
we analyzed success rates under two conditions, as reported
in Table I. Here, condition (a) utilizes the original learned
specification, and condition (b) employs a modified learned
specification incorporating an accurate constraint label for the
user-defined keyframes. As expected, under condition (a), KD
reported 0% success rates for Tasks 2 and 3, and IKL reported
the highest success rates for all tasks under both conditions.

The linear mixed-effects model analysis supported Hypoth-
esis 1 for keyframe accuracy, indicating a highly significant
increase in IKL’s accuracy compared with KD (p < 0.01)
and mACL (p < 0.01). As KD cannot learn constraints,
we examined the keyframe pose performance that did not
penalize the constraint labels of the learned keyframes and



TABLE I
TASK SPECIFICATION LEARNING SUCCESS RATES AS PERCENTAGES.

KD
mACL IKL

Con.(a) Con.(b)

Task1 50.0 50.0 33.3 66.7

Task2 0.0 33.3 41.7 75.0

Task3 0.0 41.7 16.7 58.3

Overall 13.9 41.7 30.6 66.7

found support for Hypothesis 2 for pose accuracy, suggesting
IKL’s pose accuracy was significantly higher than that of KD
(p < 0.05) and mACL (p < 0.01).

Although the analysis of Hypothesis 3 for constraint ac-
curacy indicated an increase in constraint accuracy for IKL
compared with mACL, the results were statistically insignif-
icant. However, the comparison of distributions of missed
and incorrect constraint lengths per trial suggested improved
constraint accuracy for IKL compared with mACL. For in-
stance, 50% of task specifications learned via IKL had less
than 2.18 cm of constraint length errors, whereas those for
mACL were spread over 23.65 cm. Additionally, the total
number of constraint errors for IKL (19 errors) was much
lower than that for mACL (46). We also discovered that
IKL was able to prevent 51.3% of incorrectly demonstrated
constrained motion segments through human feedback, while
73.7% of constraint errors for IKL were due to incorrect
human feedback. These findings suggest the importance of
leveraging human feedback to reduce constraint errors, and
that increasing feedback accuracy will directly improve IKL’s
constraint accuracy.

Analysis of the NASA-TLX workload scores partially sup-
ported Hypothesis 4 for teaching workload by indicating a
highly significant increase in workload for KD (p < 0.01) and
an insignificant decrease in workload for mACL (p > 0.05)
compared with IKL. These results suggest that switching from
user-defined keyframes to a continuous demonstration frame-
work significantly reduced workload, whereas interactive com-
munication introduced to continuous demonstrations increased
teaching workload. The analysis also supported Hypothesis
5 for teaching efficiency, suggesting a significant increase in
IKL’s teaching efficiency compared with KD (p < 0.01) and
mACL (p < 0.05). These results indicate that although IKL
yielded a greater teaching workload, it improved the efficiency
of teaching tasks to a robot compared with KD and mACL.

IV. CONCLUSION

Our proposed interactive keyframe learning framework
(IKL) learns a task specification encoded as an ordered
sequence of keyframes in order to capture a task’s physi-
cal interactions and move-in-line constraints from a single
demonstration. Our human-subject experiment reported sig-
nificant performance gains compared with two state-of-the-art
keyframe and constraint learning techniques. We found that
although human-robot communication during demonstrations

can increase a teacher’s workload, it significantly improves
overall teaching efficiency. Furthermore, we discovered the
positive impact of human feedback on constraint learning
and that IKL’s constraint accuracy could be improved further
through design improvements in human-robot communication.
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