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Abstract— This paper presents a novel approach for shared
autonomy in robot teleoperation that utilises a policy adaptation
technique. This is achieved by modelling shared autonomy
as an optimal control problem with a cost function that
combines operator reference tracking and goal tracking costs.
A neural network policy is trained from this optimal control
problem and the resulting Hamiltonian as the loss function.
The state error and goal error are fed as inputs to this
policy, which outputs velocity commands for the robot’s end-
effector. The resulting learnt policy is invariant to scaling,
translation, and rotation. Preliminary experiments validate the
robustness of the learned policy in tracking the operator’s
inputs while providing assistance to reach the goal accurately.
The policy generalises well to trajectories with noise, novel input
trajectories, and scenarios with closely spaced goals. Compared
to conventional model predictive control solvers, the learned
policy offers significant computational speedup, enabling real-
time shared autonomy. The proposed approach paves the way
for efficient shared autonomy in continuous teleoperation tasks
with assistive goal reaching.

I. INTRODUCTION & RELATED WORK

Teleoperation systems have been leveraged for their ability
to provide safe access to remote environments and have
found their use in applications such as surgical robots,
hazardous waste handling, deep ocean, and space exploration
[1], [2], [3], [4]. Such systems usually consist of a remotely
located robot controlled by a human operator using a locally
situated control system connected over a communication
network. The local control system allows the operator to
communicate to the robot via different input interface such as
language, physical human-robot interaction, AR/VR, haptic
teleoperation devices, and their combination.

Shared Autonomy (SA), also knows as Assistive Control,
or Shared Control [5] in context of teleoperation, typi-
cally involves a team consisting of a human operator and
an autonomous robot. This synergy leverages the unique
strengths of both parties, combining human cognitive and
decision-making abilities with the precision, strength, and
endurance of robots. SA employs algorithms for human-
robot interaction that enable seamless cooperation towards
achieving a common goal.

Shared Autonomy can broadly be divided into two cat-
egories, namely policy blending approach [6], [5], [7] and
policy adaptation approach [8], [9]. Policy blending involves
predicting the operator’s intent and blending the autonomous
input with operator’s inputs based on the estimated con-
fidence in the intent, often using Bayesian inference or
Inverse Reinforcement Learning. However, these methods
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have limitations like complete transfer of control, instability,
and potential catastrophic failure.

Policy adaptation techniques address these issues by
directly modifying the operator’s inputs based on user’s
and environment’s states. These approaches commonly
use Reinforcement Learning with composite reward func-
tions incorporating system stabilisation and task-specific
goals[8]. Various methods like DDQN[10], residual-policy
learning[11], and hierarchical RL have been proposed for
policy adaptation[12], seamlessly incorporating the user’s
feedback.

Existing shared autonomy techniques rely on precise dy-
namic models and pre-trained policies, limiting their appli-
cability to fixed number of goals tasks with discrete action
spaces. Reinforcement learning (RL) algorithms also face
data inefficiency and trust issues when transferring to real-
world scenarios. In this paper, we address these gaps by mod-
elling the policy adaptation approach of shared autonomy
as an optimal control problem. This enables policy adapta-
tion for continuous action spaces and multiple goals while
maintaining a balance of human-robot trust. Additionally, we
learn the assistive policy from the proposed optimal control
problem, which provides the added benefit of computational
efficiency through the learned policy.

Main contribution of this work are listed below:
• Shared autonomy problem is modelled as an optimal

control problem.
• A framework for learning an assistive policy is pre-

sented to learn from the proposed optimal control prob-
lem.

• Assistive policy invariant to scaling, translation and
rotation is developed using error based policy model.

The rest of the paper is structured as follows: Section II
briefly describes the problem at hand, followed by Section III
describing the optimal control formulation which comprises
of the cost function, system model and constraints. It also de-
scribes the neural network policy along with it’s architecture,
loss function and training procedure. Section IV provides a
brief description of experimental setup followed by results
that validate our approach. In Section V we summarise our
key findings and their implications along with limitations and
future research directions.

II. PROBLEM DESCRIPTION

The experimental setup, illustrated in Figure 1, involves
an operator using teleoperation to control a 6 Degrees of
Freedom (DOF) Universal Robots UR5 robot with the aid of
an HTC Vive Virtual Reality system. The specific task entails
the operator picking up blocks from a table in a predefined



Fig. 1: System: Left shows an operator wearing HMD
(1) along with hand held controller(2); Right shows stereo
camera (3), goals (4), robot arm (5) and drop box (6),
middle shows the learned policy architecture using data from
operator and controlling the robot

sequence and placing them into a designated box. In this
study, shared autonomy is formulated as an optimal control
problem (OCP) within a policy adaptation framework. This
problem is approached and solved using Model Predictive
Control (MPC) methodology. The corresponding control pol-
icy is learned from the data generated during the experiments.
For the purpose of this work, it is assumed that the operator’s
movements are always directed towards the intended goal,
with no abrupt changes in the goal while pursuing a specified
one.

III. OPTIMAL CONTROL FORMULATION

The optimal control problem for achieving operator track-
ing and assistance in reaching a goal is formulated as follows.

A. Cost function

The cost for the OCP is defined using three components:
a reference tracking cost to synchronize the robot’s motion
with the operator, a goal-tracking cost for autonomous as-
sistance as the robot approaches the goal and finally the
operator’s input tracking cost to ensure operator gets the
feeling of authority over the robot. The transition between
reference tracking and the goal tracking is managed by
a scalar weight, which is computed based on the user’s
predicted trajectory and goal locations.

min
x,u

J(x,u;g) =
N

∑
i
(wmin(xdi,g)||(xi−xdi)||Q

+(1−wmin(xdi,g))||gRb(xi−g[wmin])||P)
+ ||(ui−udi)||R

(1)

where, the subscript i denotes the ith time step for state
x and control u. Q≥ 0, R > 0 and P≥ 0 are the respective
weight matrices. The notation ||(·)||(∗) is used to represent
the quadratic form, i.e., ||(x− xd)||Q corresponds to (x−
xd)

T Q(x−xd). In the goal tracking part, the relative position
between the robot’s end-effector and goal is transformed
to the goal frame via rotation matrix gRb and scaled via
diagonal matrix P to achieve the desired goal approach be-
haviour. The weighing function w(xd,g) smoothly transitions

from tracking operator’s commands to assisting in reaching
a specific goal state based on the operator’s state as given
in the eq (2), with wmin(xd,g) being the minimum computed
weight corresponding to different goals from the goal set G .

w(xd,g) =
1

1+ exp(β −α||(xd−g)||)
(2)

where, α and β are tuning parameters. Since we are only
concerned with position of robot’s end effector, it is used
as state x. The goal g represents a position in the robot’s
workspace, and the reference xd is generated by forward
propagation of a constant acceleration model as xdt+1 = xdt +
vdt ∗δ t +1/2adt ∗δ t2, where, xdt ,vdt and adt are estimated
using a Kalman filter employing constant acceleration model
for state prediction and operator’s measured position as
measurement.

B. System model & Constraints

A point mass model is used to represent the motion model
for the robot. This flexibility is allowed due to the use of a
commercially available 6-DoF manipulator equipped with a
high gain inner loop controller for controlling the robot’s
joints [13]. Consequently, the system behaves similar to an
identity-like system to the outer loop optimal controller.

˙xt+1 = xt +ut ∗δ t (3)

where, xt and ut corresponds to the position and applied
control action (applied velocity) of the robot’s end-effector
at discrete times step t. Additionally, constraints to avoid the
robot from colliding with the environment such as planner
and ellipsoidal constraints, and can be used such as in [14],
[15].

C. Learning assistive policy

Above optimal control problem needs to be solved at
every time step to optimally track operator’s motion while
simultaneously providing assistance, which is computation-
ally expensive and time-consuming. Therefore we propose
to learn a policy as a neural network function approximation
guided by the optimal control problem. From optimal control
theory, it is known that the the optimal control u∗ minimizes
the control Hamiltonian[16]. Thus the Hamiltonian is utilized
as the loss function to learn the mapping from states to
control action for the robot, as demonstrated in the MPC-
Net framework [17].

The control Hamiltonian for the above optimal control
problem is derived as given below

H(x,πθ (x,xd ,ud ,g),λ ) = (wmin(xdi,g)||(x−xd)||Q
+(1−wmin(xdi,g))||gRb(x−gj)||P)
+ ||(u−ud)||R +λ

T c
+δxV (x)T f(x,πθ (x,xd ,ud ,g))

(4)

where, πθ (x,xd,ud,g) represents the parameterised neural
network policy, λ represents the vector of Lagrangian multi-
plier multiplying with the vector of constraints c and δxV (x)



Fig. 2: X-Y plot comparing the trajectories corresponding
to operator’s commanded reference against learned neural
network policy and AL-iLQR

is the gradient of the value function with respect to the state.
The optimal parameters θ ∗ for the policy are computed by
minimising the expectation of the Hamiltonian over the states
space

θ
∗ = argminθ Ex[H(x,πθ (x,xd ,ud ,g),λ )] (5)

D. Policy training

Data corresponding to {x,xd,ud,g,δxV (x),λ} at every
time step and state is required for learning the policy over
the entire state space using the Hamiltonian loss. This is
impractical for teleoperation tasks and may also require a
large model with large number of parameters. To overcome
this, the MPC methodology is used to collect data corre-
sponding to high-probability regions of the operator’s state
space. Specifically, the AL-iLQR formulation which provides
δxV (x) and λ as the by-products in addition to the optimal
control and state trajectory is used [18].

Additionally, for better generalisation and reduced input
dimension of the policy network, we use error signal rep-
resentation as input to the policy, with state error defined
as x̃ = x−xd and goal error defined as g̃ = x−g as inputs,
instead of their explicit counterparts which modifies the final
Hamiltonian as

H(x̃,πθ (x̃,ud , g̃),λ ) = wmin(xdi,g)||x̃||Q
+(1−wmin(xdi,g))||gRbg̃||P
+ ||(u−ud)||R +λ

T c
+δxV (x̃)T f(x,πθ (x̃,ud , x̃))

(6)

E. Data collection

Data for training the policy is generated in two stages,
in the first stage, a pair of operator’s position trajecto-
ries and corresponding goal (x0:T ,g) are collected by tele-
operating the robot and stored, additional trajectory samples
are generated by augmenting the collected trajectories with
scaling and rotation of collected trajectories about the goal

Fig. 3: 3D Trajectory of robot and the commanded operator
trajectory

Fig. 4: Variation in X-,Y-,Z-coordinates of operator’s and
robot’s position with respect to time

position. In the second stage, the collected trajectory-goal
pairs are passed through to AL-iLQR algorithm to compute
the optimal state x, δxV (x) and λ for each input desired state
xd and goal g. Generated data is further stored in a buffer as
{x̃,ud, g̃,δxV (x),λ}, which is sampled randomly and used
for training the policy.

Even with augmented data samples, that cover a large
volume of state space, the learnt policy may be biased
towards states encountered by the optimal AL-iLQR policy.
To counter this, a behaviour policy πβ is used to push
the emulated AL-iLQR loop towards the states that will be
visited when the learned policy is driving the system

πβ (x,θ) = (1−α)πilqr +απ(x|θ) (7)

where, the mixing parameter α is initially set to zero and
linearly increased with the number of iterations upto one



Fig. 5: Evaluation of the learned policy against 64 operators
trajectories that were used for training with added random
normally distributed noise in them

Fig. 6: Variation of distance between the goal and the policy
generated robot’s trajectory and the operator’s trajectory
respectively

and then maintained as one till the final iteration.
The complete algorithm for training the policy is given in

Alg. 1
For the neural network policy, we used a fully connected

neural network with 3 layers, with 9 neurons in input layer,
128 neurons in the hidden layer and 3 for output layer. Input
for the neural network is formed by concatenating the state
error, desired velocity and the goal error as [x̃,ud, g̃]. g̃ is
computed by using the goal which is closest to the operator’s
desired position xd.

IV. RESULTS

A. Experimental setup:

The experimental setup used is shown in Fig. 1, it com-
prises of an HTC Vive VR setup with controllers to capture
operators motion and HMD to provide the stereoscopic visual
feedback, and UR5 robot to perform the manipulation task.
We consider a picking task, in which the operator is required
to tele-operate the robot to pick the goals from a table.
Positions of the target objects on the table are assumed to

Algorithm 1 An algorithm for policy training

Require: SetOfDemoTraj D, AL-iLQRSolver, Policy πθ

Require: ReplayBuffer B,MaxIter, BatchSize, LearningRate
for Itter in [1:MaxItter] do

α ← 1− Itter/MaxItter
g,xtra j← SampleRandomTra j(SetOfDemoTraj)
x0← xtra j[0]+ N (0,σ)
for t in [0:len(xtra j)] do

xd ,ud ← Kalman(xtra j[t])
xmpc,umpc,δxV,λ ← AL-iLQR(x0,xd ,ud ,g)
x̃← x−xd
g̃← x−g
Append(x̃,ud , g̃,λ ,δxV) to B
x0← Step(x0,αumpc +(1−α)πθ )+ N (0,σ)

end for
if len(B)> BatchSize then

S← DrawRandomSamplesBatch(B, BatchSize)
U← EvaluatePolicyOnBatch(πθ ,S)
l← ComputeLoss(U,S)
θ ← StepOptimizer(δθ l)

end if
end for

Fig. 7: Out of sample trajectory generated by randomly
translation and scaling the original trajectory (indicated with
faint plot)

Fig. 8: Robot’s and operator’s commanded trajectory in the
presence of closely located multiple goals



be known, as they can be computed using computer vision
techniques such as [19].

Multiple demonstrations corresponding to picking of 4
different objects from the table via teleoperation were cap-
tured. These demonstration trajectories were further used to
learn the neural network policy using the technique described
above. Once the policy is learnt successfully, it is used in the
teleoperation setting to assist the operator in performing the
tasks (Architecture of the same is shown if Fig. 1). Below
we present the results corresponding to AL-iLQR and Neural
network for picking task.

B. AL-iLQR and learned policy for tracking operator refer-
ence

Proposed optimal control formulation for shared control
solved using MPC methodology and the associated learnt
policy using the Hamiltonian formulation were tested against
multiple operators commanded trajectories. The plot in Fig.
2, shows the 2D plot of XY trajectories corresponding to
one of the sampled operator’s commanded trajectory. The
trajectories corresponding to learned policy and the AL-
iLQR approach were generated by simulating the robot
motion. It can be seen that both the trajectories closely follow
the operator’s commanded trajectory within close proximity
and smoothly transition to the goal as operator reaches
the goal position, thus successfully assisting the operator
in picking the object while not requiring the operator to
finely manipulate the robot to reach the goal. Additionally,
it can also be noticed that the trajectory corresponding to
the learned policy is more compliant with the operator’s
trajectory than the one generated by the AL-iLQR algorithm,
this behaviour is mainly due to learned policy being trained
using multiple trajectories from collected demonstration and
augmentation steps.

C. Reference tracking using learned policy

Figure 3 presents a 3D trajectory followed by the robot
using learned policy against the trajectory commanded by
the operator, and the corresponding plot of variation of x-
, y- and z-coordinates against time are shown in Fig. 4. It
can be seen from these plots that the robot closely tracks
the commanded operator’s inputs, and at the near terminal
phase, robot is guided smoothly to the accurate location of
the goal even though the operator’s commanded position is
offset from the goals location.

D. Robustness of the learned policy to noise and different
starting position

The policy was also tested against varying operator tra-
jectories with induced noise to test it’s robustness against
noisy operators inputs. Additionally it was also tested on
the trajectories that were never part of the dataset used for
training. The plot in Fig. 5 shows the 2D xy-plot of the noise
induced multiple operator’s scaled and rotated trajectories
and the corresponding learnt policy generated trajectories
and the variation of distance between these trajectories with
respect to the goal is shown in Fig. 6. The distance variation

Fig. 9: Variation of distance between the robot and closely
located goals

Fig. 10: Time consumed in every iteration by the AL-iLQR
algorithm and the learned neural network policy

plot shows that even in the presence of induced noise, the
learnt policy is able to drive the robot to the goal position.
Further, additional validation of the learned policy was done
by testing on a novel trajectory generated by randomly
adding a bias and scaling the trajectory from the training
dataset by a factor of 1.2. Fig. 7 shows the ability of the learnt
policy to drive the robot on one of these completely novel
trajectory. Thus, based on these results we can confidently
conclude that the proposed approach allows us to learn an
assistive policy to teleoperate the robot while simultaneously
assisting in reaching the goal.

E. Closely packed goals scenario

Since the policy was trained using only single goal at a
time, we tested the policy by placing closely packed multiple
goals and picking one of the goal. Fig. 8 shows the plot of xy-
trajectories corresponding to one of the scenario considered.
It can be seen that, as the operator approaches the intended
goal, the robots trajectory diverged towards the Goal 1, but
due to continued motion of the operator, the policy never
converges with this non indented goal, but converges with
the goal Goal 3 which is closest to operator when the
operator stops moving. This behaviour can also be seen



clearly through the plot in Fig. 9 showing the variation of
distance between the robot and the goal positions. It can be
seen that the distance between the Goal 1 and the robot
approaches to zero, but due to continued motion of the
operator to approach Goal 3, the robot is guided to move to
Goal 3 which is confirmed by zeroing of the corresponding
distance. This behaviour of the robot is influenced by the
designed cost function, even though initially the robot is
driven closer to the Goal 1 which causes the weight function
defined by eq. (2) to transition to goal tracking, the operator’s
control tracking term ensures that the robot continues to track
opeator’s commanded motion thus ensuring that robot does
not converge to the unintended goal.

F. Comparison of computation time

Plot in Fig. 10 shows the plot of the time consumed for
each iteration of the two algorithms. Both the algorithms
were run on a standard laptop with intel i7 processor and
32GB RAM, running Ubuntu 22.04 operating system and
both the algorithms were programmed using python 3.10.
It can be seen from the plot that AL-iLQR algorithm takes
on an average approximately 43 ms per iteration, while the
neural network policy takes only 0.6ms, thus proving the
computational advantage.

V. CONCLUSION

In this paper we introduced a novel approach for shared
autonomy that utilises an optimal control formulation for
adaptation. We train a shallow neural network based policy
utilising the Hamiltonian of proposed optimal control prob-
lem as a loss function and few demonstration trajectories.
The nature of the problem formulation and policy learning
approach followed makes it robust enough to complete the
assistive control tasks. This was validated by running a series
of experiments on various scenarios. Although the results
are preliminary in nature it shows promising results for
future scenarios which includes it’s application to continuous
goal operations such as liquid pouring, door opening etc.
Besides we also plan on performing user studies in order to
better validate our approach on qualitative and quantitative
measures such as operator satisfaction, task completion time,
distance travelled. We also plan on extending this setup
towards dual arm goal coordinated and bi-manual and goal
coordinated operations.
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