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Abstract—Programming by demonstration (PbD) enables
unskilled operators to easily demonstrate tasks and guide
robots. In this paper we present comparison of demonstration
methods with comprehensive user study. Each participant had
to demonstrate drawing simple pattern using virtual marker
and kinesthetic teaching with a cobot. We conducted user study
with 24 participants which filled out NASA raw task load index
(rTLX) and system usability scale (SUS). We also evaluated the
quality of demonstration. We concluded study with finding that
human demonstration using a virtual marker is on average 8
times faster, superior in terms of quality and imposes 2 times
less overall workload than kinesthetic teaching.

I. Introduction

The lack of intuitive and fast programming methods has
been the main deterrent to application of manipulators
in agile production lines, where products and services
change daily, since programming robots requires the use
of trained robotics engineers, who often lack the practical
experience for the task at hand. Since the advent of cobots
[1], Programming by Demonstration (PbD) [2] has gained
widespread popularity in both academia and industry.
PbD, or programming without coding [3], aims to simplify
robot deployment and eliminate explicit task programming.
Demonstration can be divided into kinesthetic teaching,
teleoperation, and passive observation [4].
This paper focuses on PbD using a specially devel-

oped virtual marker and compares passive demonstration
using the marker with kinesthetic teaching using robot
manipulator via a comprehensive user study. We estimated
imposed workload and system usability, whilst measuring
demonstration duration and quality via a simple drawing
task that involves reaching of several waypoints, path
following between the waypoints and requires maintaining
the contact with the surface at all times. Theses aspects
of the task encompass a wide range of currently manual
operations in the industry, in tasks such as welding,
sanding, cutting, engraving etc. The task is designed
after a popular puzzle given to children, ensuring that all
participants are familiar with the task, as is expected in the
envisioned industrial setting, and that the only novelty for a
participant in the study is the method for demonstration of
the task. As the main contribution of the paper we present a
comprehensive analysis of the conducted comparative study
that explores workload and usability differences between
kinesthetic teaching and human demonstration.

II. Related work

Different methods, such as kinesthetic teaching [5] or
teleoperation [6], can be used for the learning phase of PbD,
followed by the representation phase with robot movement
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Fig. 1: The experimental setup for the user-experience study
comprised a motion capture system, specially developed
virtual markers, and the collaborative robot Franka Emika
Panda. Participants were tasked to draw simple pattern
using the virtual marker (human on the left) and kinesthetic
teaching with cobot (human on the right).

mapping and task execution. Various representation ap-
proaches are available, such as probabilistic models [7], and
the popular Dynamic Movement Primitives (DMP) [8].
Wang et all. [9] proposed novel approach where the

robot is able to recreate precise insertion task by passively
observing human, with visual servoing enabling human
hand tracking. Instead of visual servoing, in our work
the motion capture system is used to track the virtual
marker, which enables recording and further processing
of recorded motion, introducing flexibility and allowing
for demonstrations from different operators. Authors in
[10] propose PbD system that besides kinesthetic teaching
incorporates different modalities that humans use when nat-
urally communicating some physical task or a mission, such
as gaze and speech. As authors report, using multimodal
PbD can lead to overtrust and automation bias in the long
term, which is why it makes sense to explore HRI through
PbD with different modalities of kinesthetic teaching and
human demonstration, but also to include other modalities
that are synchronized with virtual marker motion, such
as force or human pose measurements. Building on the
work presented in [11], our setup aims to capture both the
position and force profiles simultaneously, for which we
deploy a 6DOF F/T sensor alongside the virtual marker.

III. Virtual Marker

This study focuses on the application of using virtual
marker in PbD scenarios, since we strongly believe there are
numerous different applications where kinestethic teaching
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Fig. 2: NASA raw task load index (rTLX) questionnaire results. Bar charts show mean ratings of all participants. Line
plots show frequency of certain rating for each task in the data acquired. For the workload measurement, lower rating is
better. Graphs show that virtual marker introduces significantly less workload compared to the robot guidance.

fails to capture true essence of the demonstrated skill.
Optitrack mocap system tracks the global poseTI

W of the
fiducials placed on the virtual marker in world frame. The
specifically developed calibration process is used to derive
the relative transformation between the virtual marker tip
and the Optitrack fiducials, represented as TP

I , resulting in
the global pose of the virtual marker tip TP

W = TI
W ·TP

I .
The virtual marker measures and marks points in the

global reference frame with submillimeter accuracy, which
enables the marker to be used in various applications,
especially those that require precise end-effector positioning
over extended period of time, such as welding, sanding and
drilling. The recordings obtained with marker can be syn-
chronized and augmented with other important modalities
for a given task, such as force/torque measurements.

IV. Experiment Methodology

Experimental setup (Fig. 1) consists of the virtual
marker tool, the Optitrack mocap system, a collaborative
manipulator Franka Emika Panda, force/torque sensor and
a whiteboard. This setup allows us to concurrently track
the contact force along with tracing the virtual marker.
To assess the ergonomics and user-friendliness of the

virtual marker in PbD tasks, we conducted a user study.
Participants were tasked with demonstrating drawings
using both the virtual marker and by guiding the flange of
the collaborative manipulator Franka Emika Panda. Our
primary objective was to validate the potential of this
Human-Robot-Interface (HRI) to enhance the adoption of
robot manipulators, even among unskilled robot operators.
To simulate demonstrations of tasks where the effect of
the tool can be observed during demonstration and those
where such demonstration is not feasible (safety, delicacy
of the part etc), we used two markers of same dimensions
versions: one that leaves a trace on the whiteboard, and
the other one that does not.

1) Drawing frames: To standardize user drawings created
with both the virtual marker and the robot, and facilitate
uniform post-analysis, the drawing frames were marked on
the whiteboard, and a 3D printed template was aligned
within the frame to mark five waypoints for the drawing.
This ensured consistency and comparability across all
participant drawings. The virtual marker drawing frame is
labeled as LFk

, while the robot drawing frame is denoted
as LFr

. The drawing frames were indexed using both the
virtual marker tip TP

W and the robot tip TP
B, enabling

transformation of points between frames.

2) Task and Population samples: To show difference
between demonstration methods for the same task, we
divided participants in 8 different groups to mitigate
influence of knowing tasks beforehand. Each participant
received instructions on how to use marker and the robot,
and then had to complete the drawing in four different
ways: A) virtual marker that leaves trace, B) virtual
marker that leaves no trace, C) trace-leaving marker on
a cobot, D) traceless marker on a cobot. There were
24 study participants, divided into 8 groups, and each
group executed demonstration in different ordering (ABCD,
ABDC, BACD, BADC, CDAB, DCAB, CDBA, DCBA).

V. Experimental results

After each of 4 tasks performed, participant was
prompted to fill out NASA raw Task Load Index (rTLX)
[12] and the system usability scale (SUS) test [13].Par-
ticipants had to estimate each of the following workload
categories: physical demand (PD), mental demand (MD),
frustration (F), performance (P), temporal demand (TD)
and effort (E). Compared to the original NASA TLX we
have reduced rating scale from 0-21 to 0-10 because it is
simpler for untrained users to populate such questionnaire.
In the Fig. 2 it can be seen that almost all of the workload
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Fig. 3: Left: mean System usability score (SUS) (higher
is better). Right: average time for different programming
modality (lower is better). Users determined that virtual
marker that leaves trace is best in terms of usability. Using
virtual marker speeds up demonstration process eight times.

categories (except performance which has inverted scale
which probably confused at least some participants), when
averaged across all study participants were significantly
lower for the virtual marker than for the robot manipulator.
Such results show that virtual marker induces less operator
workload compared to the kinesthetic teaching. Averaged
SUS results across participants and average demonstration
time for programming modality can be found in Fig. 3.
We also performed a drawing task quantitative as-

sessment. We evaluated the deviation of demonstrated
trajectories from the ideal lines connecting these marked
waypoints by transformed all recordings into a common
drawing frame. Then we segmented trajectories into eight
straight line sections, and resampled them to ensure an
equal number of points. Each resampled point Pi on
segment li was paired with a corresponding point Pd

on the demonstrated trajectory as shown in Fig. 4. The
orthogonal projection of Pd on li represents the drawing
error. This process was conducted for each participant
and each drawing case, paired with contact forces exerted
between the marker and the whiteboard. Fig. 4 illustrates
the task evaluation process for a single participant, showing
ideal and demonstrated trajectories (robot and marker),
drawing errors, and contact forces on the whiteboard.
The depiction in Fig. 5, obtained by overlapping all

demonstrated trajectories, highlights that the kinesthetic
demonstration spans a broader area compared to the ideal
waypoints. We also computed the mean trajectory, obtained
from the drawings errors. Alongside the mean trajectory,
we presented the standard deviation, representing the
dispersion around the mean trajectory.

The histogram depicted in Fig. 6 illustrates the distances
of the trajectory points from the ideal line, with the
corresponding count of such points. We highlight the
Epsilon area in blue, representing a 3 mm wide zone
around the ideal lines, where we anticipate the majority
of trajectory points to fall. It is evident that for virtual
marker demonstrations, a greater number of trajectory
points lie within the Epsilon area.
The force amplitude (Fig. 4) is higher and the signal

is significantly more variable in the robot demonstration.
In contrast, the contact force signal in virtual marker
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Fig. 4: Top: participant demonstration with the cobot
(green: no-trace, yellow: with trace) and the virtual marker
(blue: no-trace, red: with trace). The detail demonstrates
the sampling of demonstration, with marked point Pi on
ideal line li and point Pd on demonstrated trajectory.
Middle: drawing errors for each segment (A-H). Bottom:
contact force for each demonstrated trajectory.

demonstrations has a lower amplitude and is more con-
sistent. To investigate further, we conducted Fast Fourier
Transformation (FFT) on the force signal Fz, with results
shown in Fig. 7. It is evident that force signals from
robot demonstrations, along higher amplitude, encompass
a broader range of frequencies. This can be attributed to
the ergonomic challenges associated with guiding the robot
flange, often resulting in the loss and re-establishment of
contact between the marker and the whiteboard.

VI. Conclusion

Survey confirms (p ≪ 0.05) that the marker induces
significantly less operator workload compared to guiding
the cobot (see Fig. 2), and suggests (p ≈ 0.13) that
participants found the virtual marker system more useful
(see Fig 3). The task evaluation showed that trajectories
demonstrated with the virtual marker were closer to the
ideal task, exhibiting lower error rates and less variation
than those demonstrated with the cobot (see Fig. 5 and Fig.
6). Furthermore, demonstrations with the cobot exerted
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Fig. 5: The means of all demonstrations (blue) compared
to the ideal trajectory (red). Yellow indicates the envelope
of trajectory values, while the green area portrays the
standard deviation from the mean trajectory.
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Fig. 6: Histogram of distances of trajectory points from
the ideal segment’s lines. The narrow ϵ area, indicating
where the majority of well-demonstrated trajectory points
are expected, is highlighted.
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Fig. 7: Fast-Fourier-Transformation of force signals. Demon-
strations where marker does not leave trace are shown in
green (robot) and blue (marker), while yellow (robot) and
red (marker) show demonstrations with the trace.

higher contact force with greater variations compared to

virtual marker demonstrations (see Fig. 7). These findings
suggest that directly guiding the cobot to demonstrate
a specific task can be difficult, and the quality of the
demonstration may suffer from the operator being outside
their comfort zone. This may lead to demonstrations
that fail to capture the true essence of the demonstrated
motion, as indicated when comparing the two approaches
in the case of robotic deep-micro-hole drilling of moulds
in the glass manufacturing industry. The first approach
[14] involves kinesthetic teaching. Work in [15] focuses
on capturing the operator skill with the virtual marker
coupled with exerted forces and demonstrates significant
performance improvement compared to [14], underscoring
the importance of comfort zone for the precise capture and
successful robotic reproduction of expert skills.
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